Details
Paper ID 66
Difficulty - Medium

Categories

  • CV
  • medium

Abstract - Imaging in low light is challenging due to low photon count and low SNR. Short-exposure images suffer from noise, while long exposure can induce blur and is often impractical. A variety of denoising, deblurring, and enhancement techniques have been proposed, but their effectiveness is limited in extreme conditions, such as video-rate imaging at night. To support the development of learningbased pipelines for low-light image processing, we introduce a dataset of raw short-exposure low-light images, with corresponding long-exposure reference images. Using the presented dataset, we develop a pipeline for processing low-light images, based on end-to-end training of a fullyconvolutional network. The network operates directly on raw sensor data and replaces much of the traditional image processing pipeline, which tends to perform poorly on such data. We report promising results on the new dataset, analyze factors that affect performance, and highlight opportunities for future work. Paper - https://arxiv.org/pdf/1805.01934v1.pdf Code - https://github.com/cydonia999/Learning_to_See_in_the_Dark_PyTorch Dataset - https://github.com/cydonia999/learning_to_see_in_the_dark_pytorch